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Arrow of Time in Rigged Hilbert Space
Quantum Mechanics

Robert C. Bishop1,2

Arno Bohm and Ilya Prigogine’s Brussels–Austin Group have been working on the
quantum mechanical arrow of time and irreversibility in rigged Hilbert space quantum
mechanics. A crucial notion in Bohm’s approach is the so-called preparation/registration
arrow. An analysis of this arrow and its role in Bohm’s theory of scattering is given.
Similarly, the Brussels–Austin Group uses an excitation/de-excitation arrow for ordering
events, which is also analyzed. The relationship between the two approaches is initially
discussed focusing on their semi-group operators and time arrows. Finally a possible
realist interpretation of the rigged Hilbert space formulation of quantum mechanics is
considered.

KEY WORDS: quantum mechanics; arrow of time; irreversibility; rigged Hilbert
space.

1. INTRODUCTION

When Dirac introduced his formalism for quantum mechanics (Dirac, 1930/
1981), it lacked a rigorous mathematical foundation. von Neumann’s pioneering
work on Hilbert space theory (von Neumann, 1932/1955) became the mathematical
foundation for quantum mechanics (QM). Nevertheless, many physicists preferred
using Dirac’s bra-ket formalism because of its calculational convenience among
many other advantages including: (1) observables can be treated as continuous
operators, (2) Hermitian observables have a complete set of eigenkets and their
corresponding eigenvalues can be discrete or continuous, and (3) state vectors
are well-behaved smooth functions. However, a rigorous justification for Dirac’s
formalism cannot be given within Hilbert space (HS).

There are additional reasons to extend the HS formulation of QM to a broader
mathematical framework such as a rigged Hilbert space (RHS), also known as a
Gel’fand triplet or equipped space (Gel’fand and Vilenkin, 1964; Gel’fand and

1 Abteilung für Theorie und Datenanalyse, Institut für Grenzgebiete der Psychologie, Wilhelmstrasse
3a, D-79098 Freiburg, Germany.

2 Department of Philosophy, Logic and Scientific Method, The London School of Economics, Houghton
Street, London, WC2A 2AE, United Kingdom; e-mail: r.c.bishop@lse.ac.uk.

1675

0020-7748/04/0800-1675/0 C© 2004 Springer Science+Business Media, Inc.



1676 Bishop

Shilov, 1967; Bohm, 1967; Bohm and Gadella, 1989; Nagel, 1989). After briefly
reviewing RHS (Section 2), some reasons for going beyond HS will be given,
particularly scattering and decay phenomena (Sections 3–6). Finally, some initial
thoughts toward a realist interpretation of RHS QM are considered (Sections 7–8).

2. WHAT IS RHS?

Let � be an abstract linear scalar product space and complete � with respect
to two topologies. The first topology is the standard HS topology τH defined by
the norm

‖h‖ =
√

(h, h) (1)

where h is an element of �. The second topology τ� is defined by a countable set
of norms

‖φ‖n =
√

(φ , φ)n , n = 0, 1, 2, . . . (2)

where φ is also an element of � and the scalar product in (2) is given by

(φ , φ′)n = (φ , (� + 1)nφ′), n = 0, 1, 2, . . . (3)

where � is the Nelson operator � = ∑
i χ2

i . The χi are the generators of an
enveloping algebra of observables for the system in question and they form a basis
for a Lie algebra (Nelson, 1959; Bohm et al., 1999). For example if we are modeling
the harmonic oscillator, the χi would be the position and momentum operators or,
alternatively, the raising and lowering operators (Bohm, 1978). Furthermore if
the operator � + 1 is nuclear then the space � defined by (2) is a nuclear space
(Bohm, 1967; Treves, 1967).

We obtain a Gel’fand triplet by completing � with respect to τ� to obtain
� and with respect to τH to obtain H. In addition we consider the dual spaces of
continuous linear functionals �× and H× respectively. Since H is self dual, we
obtain

� ⊂ H ⊂ �×. (4)

The Nelson operator fully determines the space �. However, there are many
inequivalent irreducible representations of an enveloping algebra of a group char-
acterizing a physical system (Bohm et al., 1999). Therefore further restrictions
may be required to obtain a realization for �. The particular characteristics of the
physical context of the system being modeled provide some restrictions analogous
to the situation for GNS representations for the construction of W ∗-algebras in
algebraic quantum mechanics. Additional restrictions may be required due to the
convergence properties desired for test functions in �. In general, one chooses
the weakest topology such that the algebra of operators for the physical problem
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is continuous and � is nuclear. The physical symmetries of the system play an
important role in such choices (Bohm et al., 1999).3

In many regards, working in a RHS is only as complicated as using standard
Dirac bra-ket notation. There is an additional conceptual problem introduced in the
RHS extension to QM that is not present in the ordinary HS formulation; namely,
the choice of riggings � and �× are problem dependent. Every physical system,
or at best classes of systems as in scattering, has its own RHS distinguished by the
algebra of observables. This problem does not exist in HS where the natural norm
topology is prescribed for all physical systems.

The typical choice for a realization of HS is the space of equivalence classes of
Lebesgue square integrable functions L2. Smooth functions are defined for every
point, but the equivalence classes of L2 functions, the vectors of the HS, are not
so defined. In RHS there are no equivalence class problems. The vectors of � are
functions that are defined point-wise and are typically Riemann integrable. While
the position and momentum operators do not have eigenvectors in HS (Gel’fand
and Shilov, 1967), all eigenstates are well defined in RHS.4

More generally, RHS contains observables with continuous or even complex
eigenvalues, whereas HS does not, because the dual space �× contains the ap-
propriate eigenvectors along with distributions. This means that the basis vector
expansion of eigenvectors (Dirac’s spectral decomposition) can be given a rigorous
foundation resulting in the nuclear spectral theorem:

|φ〉 =
∑

n

|En)(En|ϕ) +
∫

|E〉〈E |ϕ〉dµ(E). (5)

Here the rounded bras and kets denote elements definable on HS and the first
term in (5) represents the discrete part of the spectrum. The angular bras and kets
〈E |, |E〉 denote elements defined in �×, so the second term in (5) represents the
continuous part of the spectrum.

3. EXTRINSIC VERSUS INTRINSIC IRREVERSIBILITY

Solutions of Schrödinger’s equation in HS describe the temporal evolution of
isolated quantum systems in a time-reversible manner, yet many quantum systems

3 In the simple example of the harmonic oscillator, choosing the raising and lowering operators as the
generators for the algebra or the position and momentum operators as the generators would yield
different Nelson operators, but the results are physically equivalent. However in general one does not
get physically equivalent results (e.g. choosing a different value of j in the rotation group corresponds
to a different physical system/situation). So one has to look at the symmetries, boundary conditions,
causal mechanisms, etc. in order to decide which representation of an enveloping algebra to use as a
representation.

4 Hence, in RHS the observables form an algebra on the entire space of physical states (including �×,
where Dirac kets reside).
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exhibit irreversible behavior (e.g. resonance and decaying states). There are two
distinct ways of describing irreversible processes (e.g. Atmanspacher et al., 2002).
Irreversible behavior in quantum systems is usually viewed as solely due to the
interaction of a system with its environment. This approach to irreversibility is
described as extrinsic, because the environment is crucial for irreversible evolution.
Examples of extrinsic irreversibility are given by any open-system described by a
master equation. By contrast intrinsic irreversibility refers to irreversible behavior
generated by the dynamics of a system; that is to say, the Hamiltonian describes
this irreversibility without explicit reference to an environment. An example of
intrinsic irreversibility is kaon decay.

Intrinsic irreversibility is of prime interest to Bohm and his collaborators, as
well as to Prigogine’s Brussels–Austin Group, because these types of irreversible
processes are related to arrows of time. HS QM cannot give a rigorous description
of these types of physical processes. One reason is that no HS elements exist whose
survival probability has the right form of exponential decay:

Ps = |(φ , e−i Htφ)|2 ∝ e−�t . (6)

It might be objected that physical systems decay with deviations from exponential
decay which are too small to be measured experimentally. After all probabilities
like Ps are observed in the laboratory as ratios of large numbers N (t)/N (0), where
N (t) is the number of counts of a detector and N (0) is the total population under
observation. Unless the predicted deviations from (6) are of time scales comparable
to 1/�, they cannot be empirically observed. Recently deviations from exponential
decay over short time scales for atoms undergoing quantum tunneling have been
reported (Wilkinson et al., 1997).

When decaying states are involved, (5) can be rewritten as

|φ〉 =
N∑
n

|ψG
n 〉〈ψG

n |ϕ〉 +
∫

|E〉〈E |ϕ〉dµ(E) (7)

where |φ〉 represents the prepared state vector and |ψG
n 〉, the so-called Gamow

vector,5 represents decaying states. The first term on the rhs of (7) represents a sub-
domain of the decaying state (note these are not elements of H, hence no rounded
brakets). There is usually only a small number N at the available scattering ener-
gies. The second term represents the background integral. The standard Weisskopf–
Wigner approximation amounts to ignoring the background integral, but the prepa-
ration process does not always make this term negligible. The background integral
does not have exponential time behavior, so if this term is substantial, deviations

5 As originally introduced, Gamow vectors were problematic in HS: their position probability density
increased exponentially for large negative values of t . But since decay processes must begin at some
past time t = 0, a RHS removes this physically problematic feature by allowing for more realistic
boundary conditions (Bohm et al., 1997).
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from exponential decay will result. An effect of the background amplitude is often
observed in resonance scattering experiments, whereas for decaying states, it is of-
ten neglected (Bohm, 1994). So observations of Wilkinson et al. can be explained
as the effect of the background integral in (7). Their experiment involved a series
of interventions (preparations) in the form of varying electromagnetic potentials
to introduce variations in the acceleration of the atoms under observation leading
to an extrinsically irreversible decay process.

Another reason for which intrinsic irreversibility cannot naturally be de-
scribed in HS is that HS evolution is given by

U (t)|φ(0)〉 = e−i Ht |φ(0)〉 (8)

where U (t) is a unitary group generated by the Hamiltonian H for the system. The
operator U (t) is a continuous operator with respect to the topology τH and forms
a one-parameter group of operators. The inverse is defined as U−1(t) = U (−t) for
all −∞ < t < ∞, so the evolution governed by U (t) is time symmetric. However,
semigroup operators lack an inverse. Therefore semigroups of operators are the
appropriate operators for the evolution of intrinsically irreversible processes. In HS
we must appeal to interactions with an environment (i.e. extrinsic irreversibility),
whereas in RHS semigroup evolution and intrinsic irreversibility naturally arise.

If U (t) is a unitary operator onH and� ⊂ H ⊂ �×, then U can be extended to
�× provided that (1) U leaves � invariant, i.e. U : � → �, and (2) U is continuous
on � with respect to the topology τ�. The operator U× denotes the extension of
the HS operator U to �× and is defined by 〈Uφ|F〉 = 〈φ|U×F〉 for all φ ∈ � and
F ∈ �×. Additionally U o: � → � denotes the restriction of the HS operator U
to �.

4. SCATTERING

Bohm and his co-workers have studied simple scattering experiments using
RHS (e.g. Bohm et al., 1997). Consider an accelerator which prepares a projectile
and target in a particular state. The free particle Hamiltonian is Ho while the poten-
tial in the interaction region is V . The total Hamiltonian modeling the interaction
of the particle with the target is, therefore, H = Ho + V .

An important step in their analysis of scattering experiments is the invocation
of the preparation/registration arrow of time (Bohm et al., 1994). The key intuition
behind this arrow is that no observable properties can be measured in a state until
the state has been prepared. Since it makes no sense to speak of a measurement
of an observable such as the scattering angle until there is a state prepared by the
accelerator. The time t = 0 marks the moment in time at which the state preparation
is completed and the registration of detector counts can begin (any detector counts
before this time must be discarded as noise). One of the consequences of the
preparation/registration arrow is that some mathematical operations definable in
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HS are nonsensical. For example one can calculate nonzero expectation values for
an observable for t < 0, meaning that an observable has a nonzero expectation
value before the state has been prepared.

Following Ludwig (1983, 1985) and Bohm et al. (1997), an in-state of a par-
ticular quantum system (conceived of as an ensemble of individual systems such
as each elementary particle) is prepared by a preparation apparatus (a macrophysi-
cal system). The detector (considered to be classical) registers the post-interaction
particles, also called out-states. In-states are taken to be elements φ ∈ �− and
observables are taken to be elements ψ ∈ �+ (Decaying states, such as the Dirac,
Lippman, Schwinger kets and Gamow vectors, are elements of �×

+).
The need to distinguish between states and observables implies the need for

two RHS’s, one for the states and one for the observables. The RHS �− ⊂ H ⊂
�×

− is physically interpreted as the space of states while the RHS �+ ⊂ H ⊂
�×

+ is physically interpreted as the space of observables. The justification for
these interpretations is as follows. The preparation/registration arrow implies the
mathematical conditions

∫ 〈E |ψ(t)〉d E = 0 for all t < 0 and
∫ 〈E |φ(t)〉d E = 0

for all t > 0. The requirements of analytic continuation leads naturally to a set
of mathematical spaces fulfilling these conditions: �− is the Hardy space of the
lower complex energy half-plane intersected with the Schwartz class functions and
�+ is the Hardy space of the upper complex energy half-plane intersected with
the Schwartz class functions (e.g. Bohm et al., 1997).

For the space of states �−, we seek a continuous evolution operator U o
− :

�− → �−. U restricted to �− fulfils this condition (i.e., it is continuous in τ�− ),
but only for t ≤ 0. U o

− carries states into the forward direction of time. Whereas
U forms a unitary group on HS, its restriction to the domain �− is a semigroup
for times t ≤ 0. Since U o

− is τ�− -continuous for times t ≤ 0, the extension of U
to �×

− exists as a semigroup for t ≤ 0.
Similarly for the space of observables �+, we seek a continuous evolution

operator U o
+ : �+ → �+. U restricted to �+ fulfils this condition (i.e., it is con-

tinuous in τ�+ ) only for t ≥ 0 and its temporal direction carries observables into
the forward direction of time. Whereas U is unitary on HS, its restriction to the
domain �+ is a semigroup for times t ≥ 0. Since U o

+ is τ�+ -continuous for times
t ≥ 0, the extension of U to �×

+ exists as a semigroup for t ≥ 0.
U extended to �×

− and U extended to �×
+ form two semigroups for which

replacement of t with −t is not defined. These semigroups fall out of the anal-
ysis quite naturally in the RHS framework providing a rigorous description of
irreversible behavior in a scattering experiment (Bohm et al., 1997).6

Some elements of the generalized eigenstates in �×
− and �×

+ correspond to
exponentially growing and decaying states respectively (Gadella, 1983; Bohm and

6 In general �− �= �+, but �− ∩ �+ �= {0}, so the semi-groups derived in this framework cannot be
considered as leading to two disjoint families of eigenfunctions.
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Gadella, 1989). The semigroups governing these states are

〈φ|U×|Z∗
R〉 = e−i ERt e

�
2 t 〈φ|Z∗

R〉t ≤ 0 (9a)

〈ψ |U×|Z R〉 = e−i ERt e− �
2 t 〈ψ |Z R〉t ≥ 0, (9b)

where states φ ∈ �−, observables ψ ∈ �+, ER represents the total resonance
energy, � represents the resonance width, Z R represents the pole at ER − i �

2 , Z∗
R

represents the pole at ER + i �
2 , |Z∗

R〉 ∈ �×
− represents the growing Gamow vector

and |Z R〉 ∈ �×
+ represents the decaying Gamow vector. The t < 0 semigroup is

identified as future-directed along with |Z∗
R〉 as forming/growing states. The t > 0

semigroup is identified as future-directed along with |Z R〉 as decaying states.
The preparation/registration arrow plays a crucial role in these identifica-

tions, since it serves to specify the temporal direction of the semigroups. The
space of functions plus the semigroup property alone are insufficient to determine
the temporal direction of the semigroups. One can object that relying on notions
of preparation and registration are operational or interventionist. Such an objec-
tion points to the good news/bad news nature of Bohm and colleagues’ work. The
good news is that, given the highly constrained context of the laboratory, opera-
tional procedures for preparations and registrations can be spelled out precisely.
Such an approach seems justifiable for scattering experiments. The bad news is
that the approach does not generalize straightforwardly to contexts outside the
laboratory.

5. SEMIGROUPS IN THE BRUSSELS–AUSTIN APPROACH

Prigogine and co-workers have also analyzed scattering and decay experi-
ments in their recent work. In their discussion of the Friedrichs model for scattering
and resonance phenomena, Antoniou and Prigogine apply the RHS framework and
show that the Hardy class functions form a natural function space for the analysis
of quantum scattering and decay phenomena (Antoniou and Prigogine, 1993). Un-
like in Bohm’s approach, however, they do not make Ludwig’s distinction between
states and observables. Furthermore Antoniou and Prigogine adopt the following
time-ordering: excitations are interpreted as events taking place before t = 0 while
de-excitations are to be interpreted as events taking place after t = 0. This arrow
is a kind of generalization of the preparation/registration arrow, but is based on
observations rather than interventions.

The Brussels–Austin Group discusses two semigroups of evolution operators
acting on states in �×. They split the test function space into two spaces �− and
�+ based on their time-ordering rule. On reaching the point where choices have
to be made regarding interpreting the directions of integration around the poles
in the upper and lower complex half-planes for the Hardy class functions, they
make the following choices: excitations (e.g. transitions from the continuum to the
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eigenstate in the Friedrichs model, or formation of unstable states) are considered
as past-oriented and are associated with contours in the upper half-plane, while
de-excitations (e.g. mode–mode transitions in the Friedrichs model, or decay of
unstable states) are considered as future-oriented and are associated with contours
in the lower half-plane.

The eigenvectors of decaying states are associated with a discrete pole in
the continuum and are represented by elements in the dual spaces �×

− and �×
+

(Antoniou and Prigogine, 1993). By the same continuity requirements as in Bohm’s
approach, the evolution operators split into two time domains yielding

〈φ+|U×|Z∗
R〉 = ei ERt e

�
2 t 〈φ+|Z∗

R〉t < 0 (10a)

〈φ−|U×|Z R〉 = e−i ERt e− �
2 t 〈φ−|Z R〉t > 0, (10b)

where φ+ ∈ �+ and φ− ∈ �−. Note that the roles of the upper and lower Hardy
class function spaces is reversed with respect to Bohm’s approach. The Brussels–
Austin Group identifies the t < 0 semigroup as evolving states into the past along
with |Z∗

R〉 as decaying states, while the t > 0 semigroup evolves states into the
future along with |Z R〉 as decaying states.

As noted earlier, the space of functions plus the semigroup property alone are
insufficient to determine the temporal direction of the semigroups. The Brussels–
Austin Group uses consistency with both empirical observations, as well as the
ability of systems to communicate with each other, in order to determine the
directions of the semigroups (Antoniou and Prigogine, 1993; Antoniou, private
communication).7

6. RELATING THE TWO APPROACHES

There are two immediate observations when comparing the work of Bohm and
Brussels–Austin Groups: 1) The time directions identified for the t < 0 semigroups
differ between the two research groups. 2) The roles of the Hardy class spaces
are reversed. Both differences can be traced to the temporal arrows and contexts
invoked in the two approaches.

Bohm envisions the case of a scattering experiment, where the prepara-
tion/registration arrow is built into the experimental arrangement by the very na-
ture of the interventions required. In its most general form this arrow expresses
the idea that observable properties do not exist apart from some physical state, i.e.,
observable properties logically presuppose states. However, the laboratory context
accounts for the additional criteria allowing Bohm to identify the two semigroups
as both being future-directed. Hence, there is a clearly motivated arrow of time,
albeit in a limited context.

7 The approach for transient scattering can be extended to the case where the interactions are continuous
and persistent, yielding similar results (Petrosky and Prigogine, 1997b).
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Antoniou and Prigogine envision a more general situation where excitations
and de-excitations of states occur in the absence of laboratory-type interventions.
Invoking such an arrow of time along with other conditions (e.g. the ability to
communicate) leads to the assignment of temporal directions in (10). The t < 0
semigroup is ignored as we never observe it, leading to a consistent description of
irreversible processes. Nevertheless, the generality of the excitation/de-excitation
arrow gives us no physically rigorous argument for the temporal arrow because
the arrow is supplemented with conditions consistent with our experience.

One might think that Antoniou’s and Prigogine’s not distinguishing between
states and observables leads to the differences between the two groups since
�− ⊂ �×

+. However this is not the case, because the distinction between states
and observables is dependent upon the preparation/registration arrow. Although
preparations are particular kinds of excitations and registrations are associated
with particular kinds of de-excitations, the Brussels–Austin focus on states leads
naturally to a different splitting of the RHSs based on their more general arrow.

7. INTERPRETING THE RHS FORMALISM

Many advocates of RHS are reluctant to give a realistic interpretation to the
elements of the mathematical framework. Bohm and the Brussels–Austin Group
are likewise cautious in this regard, but indicate that they have some (possibly
surreptitious) realist leanings regarding these elements. For example both groups
consider the elements of � to represent possible physical states or observables of
the system (Bohm, 1967; Antoniou and Prigogine, 1993).8

There are tensions, nevertheless, between what is considered realistic versus
what is considered merely useful for computational purposes. For example Bohm,
following Ludwig (1983, 1985), takes the preparation and registration apparatuses
to be classical devices. Preparation apparatuses prepare the states φ while registra-
tion apparatuses detect or register the observables (or the values thereof) ψ . These
observables are considered to be the “real” physical entities (Bohm et al., 1997,
pp. 496–497). Bohm, however, often asserts that microsystems—the “agents by
which the preparation apparatus acts on the registration apparatus”—are imaginary
(e.g. Bohm et al., 1994, p. 443) or that there is no need to assume they exist (Bohm
et al., 1997, p. 496). The “imagined entities connected with microphysical systems
are not restricted to �; indeed their energy distributions do not have to be well-
behaved functions of the energy” (Bohm et al., 1997, p. 497). Therefore, Bohm
concludes that, “for the hypothetical entities connected with microphysical sys-
tems, like Dirac’s ‘scattering states’ |p〉 or Gamow’s ‘decaying states’ |E − i�/2〉,
the RHS formulation has a much larger choice and can describe them by elements
of �×” (Bohm et al., 1997, p. 497; see also Bohm et al., 1994).

8 Indeed although both � and H are mathematical idealizations, Bohm takes � to be “closer” to reality
than H (Bohm, 1978, p. 21).
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On the other hand, Bohm seems inclined at some points to attribute reality to
these entities: “ . . . there may be a larger class of ‘microphysical states’ (in addition
to the Dirac Kets, Gamow vectors, virtual state vectors . . . and others . . .) which
still await their physical interpretation” (Bohm et al., 1994, p. 446).9 Or again,
“Though there is an abundance of resonance states in nature which are described
by first-order Gamow vectors and which evolve according to the exponential law,
there is no direct experimental evidence for microphysical objects associated with
N th order poles, N > 1, of the S-matrix which are described by higher-order
Gamow vectors” (Bohm et al., 1997, p. 529). His comparison of the evidence
for objects described by first order Gamow vectors with the lack of evidence for
objects described by higher-order Gamow vectors appears to assume a realistic
construal of such entities. Indeed, he writes that the physical meaning of these
higher-order Gamow vectors is questionable in contrast with those of first-order
(Bohm et al., 1997, p. 532). Bohm then continues, “ordinary Gamow states have
been identified in abundance, e.g., through their Breit–Wigner profile in scattering
experiments, or the exponential decay law” (Bohm et al., 1997, p. 532).

Although rarely making interpretive comments, the Brussels–Austin Group
also give indications of realist leanings. For example they assert that the eigenvalues
of observables in �× “influence” the evolution and produces decay (Antoniou and
Prigogine, 1993, p. 454) and suggest that resonances should be associated with
physical observables in unstable systems (Antoniou and Melnikov, 1998). As well,
they seek to reify distributions (elements of �×) as the fundamental ontological
elements of descriptions in both classical and quantum unstable systems (Petrosky
and Prigogine, 1997a,b; Bishop, 2004).

8. TOWARD A REALISTIC INTERPRETATION OF RHS QM

The RHS formalism has proven useful for illuminating our understanding
of particular irreversible processes found in a variety of unstable systems (e.g.
approach to equilibrium, decay, scattering). Yet the prospects for answering our
general questions about irreversibility and the origin of various arrows of time are
not clarified as yet. The preparation/registration arrow proposed by Bohm clarifies
the nature of irreversibility in scattering experiments, but is much too limited for
application to more general settings. For example when the restriction to laboratory
interventions is dropped—as in the excitation/de-excitation arrow proposed by the
Brussels–Austin Group—the arrow can no longer uniquely determine the direction
of the evolution semigroups governing physical processes. We must still choose
the temporal directions of the semigroups based on additional criteria such as
observational experience or consistency.

9 Bohm’s point here is that there may be many other elements in the space �× that have a physical
correspondence or interpretation (i.e. there may be new, as yet undescribed, physics), a point on which
he was silent in earlier writings on RHS quantum mechanics.
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Compared to the standard HS framework, the RHS framework provides a
significant advantage in the description of irreversible processes in that semigroup
evolutions arise naturally in the latter. Obviously more than the presence of semi-
groups is needed, however, in order to explain the arrow of time in quantum me-
chanics. One suggestion that could contribute to a more complete understanding is
to develop a robust realist interpretation of the elements of the RHS formalism. A
crucial reason why a realist interpretation may prove important to further clarifying
irreversibility and the quantum arrow of time is provided by one of the core intu-
itions of the Bohm and Brussels–Austin approaches: namely, that irreversibility is
rooted in the dynamics of physical systems. If that is the case, then the elements
of the RHS formalism have to be mapped onto elements of physical systems. So
the tensions discussed earlier need to be clarified and the realist suggestions filled
out in order to better elucidate the dynamical mechanisms at work in irreversible
processes.

A realist interpretation of the elements of the RHS formalism cannot be carried
out generically (see Melsheimer, 1974a,b for some indications why). It requires
concrete realizations of the dual pair {�, �×} which are tied to the algebra of
observables of the systems in question. Once such an interpretation for a given dual
pair is in place, the power of the RHS framework for clarifying and illuminating the
dynamical processes responsible for irreversible behavior of these systems should
be greatly enhanced. Some evidence for this can be seen in (Bohm et al., 1997;
Petrosky and Prigogine, 1997a,b; Bishop, 2004).

For example in RHS QM, the decay of scattering states is associated with a
Gamow vector with eigenvalue λ = ER − i �

2 , a mathematical element not well de-
fined on HS. The Gamow vector involves physical quantities such as the resonance
energy and the full width at half maximum (note that � = 0 corresponds to the
rest energy for the composite particle). Furthermore, under the Bohm approach,
the condition 〈E |ψ(t)〉 = 0 for all t < 0 refers to the energy distribution of the de-
tected state while 〈E |φ(t)〉 = 0 for all t > 0 refers to the incident beam resolution.
All of these quantities are physically measurable; however, the concepts involved
(energy, momentum, time, etc.) are not exhausted simply by associating them with
preparation or measurement procedures. Hence, in the RHS framework, one can
then make a direct correspondence between mathematical elements, on the one
hand, and their physical counterparts and causal efficacy, on the other hand, in a
way that goes beyond operational procedures.

Other viewpoints focus on initial conditions as the explanation for irreversibil-
ity and arrows of time. However, realistic initial conditions involved in explaining
irreversibility and time arrows often cannot be formulated in HS. For example in
the case of scattering, the standard initial condition in HS is that states are not
interacting with the scattering center at t → −∞. Of course this initial condition
is unrealistic as the particles crucial to the experiment have not been created or
properly prepared until some finite time before the interaction. Yet HS cannot
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accommodate more physically realistic initial conditions for scattering processes
(Bohm et al., 1997). The RHS framework can accommodate realistic initial con-
ditions in a natural way; so a realistic interpretation of the elements of RHS could
also play a fruitful role for the special initial conditions route to explanations of
irreversibility as well.
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